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Abstract—Optimal design of a rigid-plastic stepped beam and circular plate is considered in the first part of
the paper assuming the mode form of motion. The form of optimal mode is sought for which a structure of
constant volume attains a minimum of local or mean deflection. It is assumed that the constant kinetic
energy Ko is attained by the structure through impulsive loading. Differences between optimal static and
dynamic solutions are discussed. Non-uniqueness of modes is demonstrated and significance of stable mode
motions is emphasized. In the second part of the paper, an optimal design of a rigid-plastic stepped beam
Joaded by a uniform pressure over a time interval 81 <, is considered assuming constant beam volume
and looking for a design corresponding to minimum of local deflection. The solution presented is valid for
moderate dynamic pressures when mode motion occurs during consecutive time intervals and no travelling
plastic hinges exist.

1. INTRODUCTION

When optimizing plastic beams or plates with prescribed static loading and support conditions,
the minimum of material volume or cost is sought for prescribed safety factor against plastic
collapse. The optimality condition then requires constant rate of dissipation per unit length or
area of the middle surface for unconstrained thickness variation or constant mean rate of
dissipation for one-parameter variation of cross-section within prescribed intervals(1, 2]. Thus
for the well known Foulkes failure mechanism in frame structures corresponding to optimal
solution, at least one plastic hinge must occur within each prismatic member and the rate of
rotation at each hinge is governed by the condition of mean rate of dissipation.

The case of dynamic loading is far more complicated since transient dynamic behaviour
depends on time and space variation of loading. However, a simplified picture is obtained when
considering only mode forms of motions, that is

wix, 1) = vilx, 1) = wi(x) (1), M)

where vi(x, t) and w(x, 1) denote the velocity and the displacement of material element. It was
shown by Martin and Symonds (3] that for rigid, perfectly-plastic materials, permanent mode
solutions exist during the whole motion of the structure provided proper initial conditions are
prescribed. Moreover, w,{x) is an eigenfunction for the case of impulsive loading, characterized
by an extremum principle [4] with the corresponding eigenvalue proportional to the acceleration
of motion. Usually, the initial transient motion tends to the modal form which predominates in
the final period before the rest.

In the first part of the present paper, we restrict our analysis to mode motion (1) and study
the optimal form of wi(x) for which a structure of constant volume attains a minimum of
deflection at prescribed point or minimum of mean or maximal deflection. It is assumed that the
initial instant the structure attains the kinetic energy K, and the subsequent motion proceeds in
the modal form (1). Instead of studying general optimality criteria, we rather restrict our
analysis to solution of several particular cases from which some general conclusions will be
deduced. In particular, it will be shown that particular modes representing optimal solutions are

+The present work was written when Dr. U. Lepik was a Visiting Professor at the Institute of Fundamental Technological
Research in Warsaw.
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not formed by multi-degree-of-freedom mechanism as in the static case. Moreover, the
non-uniqueness of modes for some values of design parameters will be demonstrated.

In the second part of this paper, an optimal design of a rigid-plastic stepped beam loaded by
a uniform pressure over a time interval 0 <t <1, is considered. Although, the mode solution (1)
is no longer valid in this case, it is assumed that different mode motions occur during
consecutive time intervals. The solution for pressure loading clarifies also the important
problem of stability of modes, indicating that multi-degree-of freedom modes are unstable and
motion terminates usually through a one-degree-of freedom mode.

2. IMPULSIVE LOADING: OPTIMAL DESIGN OF BEAMS
WITH SEGMENTWISE CONSTANT THICKNESS

Consider a rigid-plastic beam of rectangular cross-section with piecewise-constant thick-
ness, simply supported at both edges, Fig. 1(a). At the initial instant, the kinetic energy K, is
imparted to the beam and the subsequent motion satisfies the mode solution (1). Assuming
constant volume of the beam, let us determine optimal thickness h., h., s of the three portions
AB, BC and CD that correspond to minimum of final deflection at A. Thus the problem is
formulated as follows

minimize Ua 2)

subject to V =2D[ah,+ (b — a)h>+ (1 — b)hs],

2t a b i
k =%f mv® dx =f pDhv*(x, t)dx+f pDhv(x, 1) dx+f pDhv’(x, Hdx =K, (2)
0 0 a b

where p denotes the material density, v = w(x)¢(t) and ¢ = w(x)p(t) are respectively lateral
velocity and acceleleration; a, b, I, are dimensions shown in Fig. 1(a) and D denotes the beam
width. Denoting by M and Q° the bending moment and the shear force, the usual equations of
motion take the form

%J;L " ‘:3 = pDh(x)w(x)$(0). 3

Note that M = M(x), Q = Q(x) and therefore é(t)= —q = const. where g denotes constant
deceleration of motion; hence v(x, £) = vo(x) — gtw(x).

Assume now that the mechanism of motion is that shown in Fig. 1(b), where plastic hinges
may occur at junctions of beam segments B, C and the beam center A. Denoting relative
rotations at the hinges by 6, ¢ — 0 and ¢ — ¢, it is evident that for positive bending moments
there should be < ¢ <. Thus when 8 = ¢, no hinge occurs at B and when ¢ = ¢ there is no
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Fig. 1(a). Beam dimensions and (b) yield mechanism with plastic hinges at A, B, C and B’, .
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hinge at C. For modal, motions the proportionality relations

&

= ¢_
s 0 A @

should hold during the whole period of motion; here p and A are constant proportionality
factors. The deflection field can now be described as follows

[d=-b)u+(b—-a)+(a—-x))6(t), for xe[0,a]
ux, ) =< [({=b)u — (b —x)r16(t), for xela,b]
(1 -x)ud(t) for xelb,l]. &)

Let us introduce the following non-dimensional quantities

24 g b x ok
a=p B=p £=p v=yy 87, ©
The beam volume is now expressed as follows
V =2Dh,IA =2Dhsllay + (B —a)8 +1-B], )
and the thicknesses h;, h», h; are
_ Vy _ Vs Vv
M=o "= "Ton @®

Integrating the motion eqns (3) and using (5), the following expressions for bending moments at A,
B, C, are obtained

M,=- %pDh;l’ﬁ(A; + A2\ + Asp),
Mp=- %pDh,Pé'(Bl + B2\ + Bap), 9

Mc=- %pDh;l’(;(C. + CoA + Cap).

where
Ai=a’y(3-a), A:=[3ayQ-a)+(B-a)3-2a-B)SI(B - a),
As=[BayQ~a)+3B-a)2-a-B)s+2(1-B)), B.=3a’y(1-a),
B;=[6ay(1-a)+(B - a)(3—2a - B)8)(B — a),
B;=[6ay(l~a)+3(B—a)2-a—B)8+2(1-B))(1-B),
Ci=3a’y(1-B), C:=3(B~a)(l-pB)2ya+(B-a)d], (10)
C:=2B3ay+3(B—a)d +1-8)(1-B).

The bending moments Ma, Ms, Mc must satisfy the following inequalities

Mu= MAO = % DO’ohlz, My = Mno = %Do’ohzz, Mc= Afc0 = 'i‘ DO'oh;z. (1)

Introducing the quantities

_ 3oV p=-2 Q=—£ R:—i (12)

N= 4pl*D’ N’
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the inequalities (11) can be presented in the form

X=Am+A@+Am—%sQ

2

Y=Bm+Bﬂ+Bm—%sm (13)
Z=GP+QQ+C£—%S&

Note that R= Q=P since otherwise the dissipation rate at respective hinges would be
negative. When any of inequalities (13) is satisfied as strong inequality, the corresponding
cross-section remains rigid and plastic rotation occurs when (13) is satisfied as equality. Note
that when (11) or (13) are satisfied, the bending moments nowhere exceed the yield moments
since the maximum of M (x) is attained only at x = 0.

Now, let us derive the formula for final deflection at the beam center. Starting from the
representation (5) and noting that 8 = const., the beam velocity is expressed as follows

v = w(x)[6t + 6(0)]

and the motion ends at the time

= Qg,)_) (14)
Thus the final deflection at the center { = 0 equals
0
w09 =~ 2111~ o+ B - +a1 0. (1)

In order to calculate the ratio §7(0)/6 occuring in (15), let us apply the energy balance equation
K + A =0, where K(t) denotes the total kinetic energy and A(t) is the plastic work dissipated in
hinges A, B, C and A’, B, C'. Since

6(1) (16)

vix, t)= w(x)0(t) = p(x, 0) —= 0(0)

the rate of kinetic energy can be expressed as follows

> _ 1 0°(t)
K= 2Dpf vi(x, Hh(x)dx =2Dp [02(0)] J’ v’(x, 0)h(x) dx
_ 2K,
0 (0) 0(t)0 an

and the rate of plastic work is

. . . . : . D 0’132 2 2 A
A=2AM.6+ Ma(¢ — )+ M(6 — )] = =2 [y* + (A = D87+ 1 - AJd(0), (18)
From (17) and (18) one obtains
0°(0) _ 8K,

“5‘DU()h32[72+(A_1)52+H~—A]. (19

Substituting (19) into (15) and using (8), (12), we finally obtain

u(0, 1) =18 f Fla, B, v, ), (20)
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where

_[(1-B)R+(B-a)Q+aP]A’
F(av B’ Ys FL)_‘ R+(82_ I)Q+('YZ_62)P (21)

The problem of optimal design can now be solved as follows. For any combination of
parameters 0 <o < B =<1 and 1= 6 = y the proper yield condition can be selected from Table 1,
the quantities P, Q, R calculated from (13) and the value of F from (21).

Table 1 shows all fundamental yield mechanisms with corresponding inequalities for
bending moments and conditions for P, Q, R. Using this table, some special cases can easily be
discussed.

(i) For a beam of constant thickness there is y = § = 1 and only the mode 1 from Table 1 is
possible. Now we have P = Q = R = 0.5 and the relation (20) provides F = 1.

(i) When a = 8, only the portions of thicknesses h, and h: occur. The second inequality
(13) is now not applicable since plastic hinges at B and C coincide and A, = C,=0. Thus (13)
takes the form

X=AP+A£—%SQ
(23)

z=cm+cm—%su

The three fundamental yield mechanisms representing eigenfunctions are shown in Table 2.

3. IMPULSIVE LOADING ON BEAMS:
DISCUSSION OF NUMERICAL RESULTS

(1) Let us begin our discussion with the simpler case when a = 8 that is with the beam with
two steps. Figures 2—4 show the results of numerical calculations. Figure 2 shows the regions of
occurence of the three modes of Table 2 in the plane (o, v). It is seen that the mode 3 with two
active hinges at A and C may occur only in a narrow dashed zone. Moreover, as it follows from
Fig. 3, all three modes are possible in this region. In fact, for any value of «, the mode 1 with
the central hinge may coexist with two other modes within the interval yx <1y = y*. This

Table 1. Mode forms for the three-segment beam and inequalities for
bending moments

Conditions for

Case bending moments  Conditions for P, Q, R

Ma = Mas P=Q=R>0

1. Mg < Mgs X=0,Y=0,Z2<0
Mc = Mcs
M, <M.s PZO,Q=R>0

2 M, = Mps Xs0,Y=02Z=<0
M(‘ SMCS
M, =<M.s P=Q=0vR>0

3. My = Mss X=0,Y=0,Z=0
MC = Mcs

M,=Mas R>P=Q>0
Mg < Mg X=0,Y=<0,Z=0

o

M. = Mcs

M,=M.s P=0,R>Q>0
3. Mo = Mas X=0,Y=Z=0

M(‘:M('s

M,=M.s R=Q>P>0
6. Ms = Mas X=Y=0,Z=0

M. =Mes

M.=M.s R>Q>P>0
7. MB=MBS X=Y=Z=0

M('=M(‘S
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Fig. 2. Two-segment beam: regions of occurence of modes 1, 2 and 3 in the plane (a, v).
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Fig. 3. Two-segment beam: dependence of non-dimensional deflections F and G on y = h/hs.

Table 2. Mode forms for the two-segment beam and inequalities for bending
moments

Conditions for
Case bending moments Conditions for P. R

M, = Mas P=R>0
1. [ M. < My X =0, Z=0
M,\SMAS P:(),R>0
2 M. = Mcs X<0,Z=0
3 My=M, R>P >0
. M. = Mcs X=Z=0
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Fig. 4. Two-segment beam: dependence of minimal values of F and G on « = a/l for modes 1 and 2.

interval may be called the domain of instability of modes since abrupt change from one mode to
another may occur for infinitesimal changes of parameters o or v.

Figure 4 shows the dependence of minimal values of F corresponding to points K and L on
the parameter a for modes 1 and 2. It is evident that the mode 2 with a rigid central portion
corresponds to smallest final deflection and this solution is preferable. The theoretical minimal
value of F equals Funin = 0.48 and is attained for o = 0.89, y = 2.2. This solution corresponds to
point L in Fig. 3. Moreover, in order to avoid designs within instability domain, a solution
represented by point M can be selected; this would provide parameters a = 0.9, ¥ = 2.6 and
F = 0.06. As compared to the beam of constant thickness, the deflection at the center would be
reduced by 40%.

Instead of considering the local deflection, we could also provide a design minimizing the
weighted mean deflection

i(ty) = U: wt;, x)h(x) dx]m. 24)

For simplicity, let us calculate the expression for i(¢;) in the case a = 8.
In view of (5), we obtain

at) = Il/—%l—}l—}l{(l -a)Cay+1-a)A’ +a’y[Bl-a)A + al}?e(t). 25)

Introducing again the functions P and R defined by (12), it is found that the minimum of
weighted mean deflection leads to minimization of the following factor

A3I2 2 2 2 nu2
G = prg (1~ @ Bay +1- )R+ 2’y3(1-@)PR + 2P} "™, (26)

The values of G are plotted in Figs. 3 and 4 by dotted lines. It is seen that jumps in mean
deflection are smaller in the instability domain than previously although all previous conclusions
remain valid. The global minimum of G now occurs at a =0.77, y = 1.6 and G, = 0.81; thus
the optimal solution provides the reduction in mean deflection equal to 19%.

(i) Let us now discuss the case i, # h» # hs. This case is much more complicated since all
seven modes of Table 1 should be investigated; moreover, the topology of instability domains is
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much more complicated. Figure 5 shows regions where different modes occur in the plane (a, v)
for 8 =09 and & = 1.4. It is seen that six or all seven modes may exist for some values of
design parameters.

Figure 6 illustrates the dependence of F on a for 8 = 0.9, y =2.4 and § = 1.4, and variation
of modes with varying «. In order to find a global minimum of F, the calculations were carried
out for all possible values of design parameters, assuming the mesh Aa = AB = A8 =0.05. It
was found that Fo.i. = 0.45 occurs for a = 0.60, 8 = 0.90, y = 2.40, § = 1.90 for which the motion
corresponds to mode 3. When comparing this value with the optimal solution for a two-step
beam (Fnmin = 0.48), it can be concluded that the latter solution corresponds practically to
optimal design. Thus there is no need to use multi-step designs in the case of impulsive loading.

2,8

2,6}

241

o

1 1 1
0,75 0,80 0,85 090

Fig. 5. Three-segment beam: regions of occurrence of various modes on the plane (a, y) for 8 = 0.9, § = 1.4,

p-09
04t = 24
S =14
0,3 ol
0,7 0,75 0,80 085 0,80

Fig. 6. Three-segment beam: dependence of non-dimensional deflection F on « for B =0.9, y =2.4 and
§=14
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4. CIRCULAR PLATE UNDER IMPULSIVE LOADING

Following the analysis for the beam, let us consider now a circular plate with segmentwise
constant thickness, simply supported at the outer edge. For simplicity, consider only two
portions 0<r=<a and a <r <R of thicknesses h, and h,. The equations of motion take the
form

% M)-M,=rg, WO_ @7

where M,, M, are bending moments and Q° denotes the shear force. The rates of curvatures
are

. d’u . _ ldu

ke = ar® ke = rdr 28)

Assuming the Tresca yield condition and the stress régime M, — M,=0, 0<M, < M,, the
deflection field can be presented in the form

(R-a)(t)+(@a—nr)o(t), O0=<r=a,

“(”‘)={(R—r)¢(t), a<r=R,

29

where 9 and ¢ are the angles of rotation at hinge lines A and C. It follows from (28) that k, = 0,
k, = 6/r and k, = 0, k, = /r within the central and outer portions. In order to have k, >0, there
must be § =0 and §=0.

Since for mode solution (1) the static field does not depend on time, both 6 and § are
constant. Thus the eqns (27) can easily be integrated. When both hinges at r =0 and r = g are
active, the stress profile is that shown in Fig. 7(a) and we obtain

M, = Mo, +Tl§ph1r2[2(R -a)+QRa~-nbl, Osr=a,
M, = aMo, + (r — a)Moa + % pa*h[2(R — a)3r - 2a)i + a2r — a)f]
+1—12ph;».[2R(r3 -3a’r+2a°)-(r'-4a’r+3a%)y, a=r=R (30)

where Mo, = (1/4)aoh,® and Mo, = (1/4)aoh,’ are bending yield moments.
Introduce the non-dimensional quantities

a by eV o 6 L
R’ Y hz’ N_7TP ER) S—N, T-N (31)

o=

From the condition of constant volume, V = #R*h,+ ma*(h, — h2) we obtain

Vy \'4

h, = b=
=L (32)
Mg My My
r=0 il r=0 /
/
\
s 0
r=qQ
R ]™¢ =R =R r=o
/
/
M, M, 4 M,
Mos Mo2 Mos Moz Mos Mg,
a/ b/ ¢/

Fig. 7. Circular plate: stress profiles for (a) mode 3, (b) mode 1, (c) mode 2.
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where A =1-a’+ a’y. Satisfying the boundary conditions M,(a) = My, M,(R) = 0, we obtain
the following set of equations

2_
AS+AT=- Y1

A
B\S+B.T = - ﬂiA'_—“ 33)
where
Ai=a’y, A=2a’y(1-a), Bi=a’y(2-a),
B.=2a’y(1 - a)3~-2a) +(1-a)'(1 + 3a). (34)

The formuia for final ’deﬂ'e.:c"tion at the plate center can be derived similarly as previously.
Denoting A = /8 = /8 = ¢/8, we can easily find from (29) that

u(0, t;)=—g§—(-)-lg[(1—a))\+a], (35)

and the term 6,°/6 can be found from the energy equation A + K = 0. The rate of kinetic energy
now equals
K = K, 2% (36)
6o

and the dissipation rate can be expressed as follows

a R a+0 2.
A :27TJ' M0|édr+zﬂf M()zij/ dr_27Tj Mr_g_rgrdr
(\] a a0

= 27R{(Mo: ~ Mo2)a + Moxyp). (37

Using (36) and (37), from the equation A = - K, one obtains

6 2KemRA’

6 ="35" oo V(y*~ Da +A] (38)

and the function to be minimized is

_paSti-oT

F=4 aS(Hy’-1D+T (39)

subject to the condition T <8 <0.

In the case when the hinge at r = a is inactive (Fig. 7b), we have 8 =, S=T and
AZ
= ———, 4

ay’+1—a “0)

Similarly, when the central zone 0 < r < a is rigid, (Fig. 7¢), there is 8 =0, S = 0 and (39) gives
F=(0-a)A% (41)

When instead of minimizing the central deflection we want to determine a design corresponding
to minimum of weighted mean deflection #(t,), that is

at) = (‘n"[)R wZhr dr)”2 = R\/(i—;%){[&xzy(l —a)l+(1—-a)(1+3a)A?

+4a’y(1— o)A +a’y}'"0(t) (42)
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the function to be minimized is

A3/2 3 2 2 y1/2
= 2= 15T @ ¥SlaS +4(1 - a)TT+ (1 - a)6a y+(1-a)(1+3)TH?  43)

Note that for a plate of constant thickness we have y=1, S=T and F=H = 1.
The results of calculations are shown in Figs. 8-10. It is seen that ail features of the solution
for a beam are preserved in this case. Figure 8 illustrates the ranges of a and y for which the

¥

25}

1.8}

i

0,2 04 0.6 0.8 1.0 o
Fig. 8. Circular plate: regions of occurence of modes 1, 2 and 3 in the plane (a, v).

02t

0 . L L
12 14 1,6 1,8 20
Fig. 9. Circular plate: dependence of F on y for « =0.8.
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0,2f

02 04 06 0,8 10 o
Fig. 10. Circular plate: dependence of minimal values of F and H on a for modes 1 and 2.

three modes occur: again the mode 3 may occur only in a narrow dashed zone. Figure 9 shows
the dependence of F on y for a =0.8. It is seen that for y, <y =<vy* the three modes may
occur simultaneously and minimum of F takes place for y =y ,. Figure 10 shows the de-
pendence of minimum values of F on a. It is found that minimum of F occurs for a = 0.95
v =2.75 and Fan = 0.33. Dotted lines in Figs. 9 and 10 show the dependence of H on y and a.
In both cases minimum design corresponds to the modal form with a rigid central portion and
plastic hinge near the support.

5. IMPULSIVE LOADING: DISCUSSION OF RESULTS

The presented examples indicate that in minimizing local or mean deflections under
impulsive loading, the concept of a simultaneous failure mechanism widely used in the static
case cannot directly be extended to dynamic loading. In fact, a minimum of local or mean
deflection corresponds to a mode represented by a one degree-of freedom failure mechanism with
plastic hinge near the support and the central portion undergoing a rigid body motion. This result
may be interpreted by considering initial velocity field and the dissipation rate within the structure.
For given total initial kinetic energy K, the corresponding velocity field will possess a minimal
value of maximal velocity for a uniform velocity field which represents a rigid body motion. If
constraints are imposed by supports, this uniformity may occur only within some portions of the
structure. On the other hand, the maximum dissipation capacity will be attained for uniform
dissipation rate within the structure and plastic flow should occur within all structural members.
The compromise between_these two requirements leads to designs of stepped beams and plates
obtained in this work. It is also clear that requirement of minimum of local, or weighted mean
deflection leads to different designs and this dependence was illustrated in this paper.

Non-uniqueness and instability of some modes is also an interesting feature of the solutions
discussed here. Although stability of modes was not investigated, the analysis of the case of
pressure loading indicates that multi-degree-of-freedom modes are unstable and the motion
terminates through a one-degree-of freedom mode. The question of stability of modes is also
discussed in a paper by Symonds and Wierzbicki[5] concerned with mode motions in plastic
and viscoplastic structures.

6. OPTIMAL DESIGN OF PLASTIC BEAMS UNDER
DYNAMIC PRESSURE LOADING
In this section we shall investigate the related problem of optimal design in the case of
pressure loading which is uniform over the beam and constant during the time interval
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0=t =<t, Consider the simplest case when the beam consists of two portions AB and AC of
thicknesses h, and h, and the width D, Fig. 11(a). The yield mechanism is shown in Fig. 11(b)
with plastic hinges at A and B and angles of rotation § and ¢ — @ respectively. We shall
investigate the beam motion and the effect of varying ratios y = h,/h; and & = a/h on the final
deflection at A. It was found for the case of impulsive loading that the one-step design such as
that of Fig. 11(a) closely approaches the optimal solution and there is no need for a multi-step
design. It can therefore be expected that optimizing the design of Fig. 11(a) under pressure
loading will provide a solution close to the theoretical optimum.

6.1. Theoretical analysis of beam motion

Whereas in the case of impulsive loading we assumed the mode solution to persist during
the whole motion, the present case requires consideration of particular cases of motion with
different ratios of rotation rates at plastic hinges A and B. We will not, however, consider the case
when hinges may move within the portions AB and BC which takes place for high values
of pressure p. Thus the present case can be referred to as ‘““‘moderate pressure solution” and its
validity will further be examined.

o [U-a)(t)+(a-x)8(), 0sx=aq, 44
ax, )= {(l—x)./}(z), a<x<l, “4)
where 6 = (¢) and = y(t) are rates of rotation of portions AB and BC. Denoting by M and
Q’ the bending moment and the shear force, the equations of motion take the form

M_,. o
- @

= — p + pDhii (45)

where D denotes the beam width. Since p is constant in time for 0=t <¢,, the bending
moments do not depend on time when i = ii(x) that is = const. and 6 = const.
The optimization problem can be formulated as follows: for a beam of constant volume

V =2Dh.l[ay + 1 — a] we want to find such values of @ and y for which the final deflection at
the beam center is minimum. Instead of looking for the proper optimality condition, we
determine the optimal solution through the numerical search analysis.

Integrating the equations of motion (45) and satisfying the boundary conditions for x = 0 and
x =1, the expressions for bending moments can be found and moments at A and B can be
calculated. Since for moderate pressures, the bending moments attain only extremum at x =0,
it is obvious that plastic hinges may occur at A and B and the following inequalities must be
satisfied

MisMos= %D(To}hz, Mg =My = %Dﬂohzz. (46)

1A B

1 | [ L4 ¢C
t
A of
— a ——|
I { -
r 1

S c

b/
'?
B’ B

A

Fig. 11(a). Beam dimensions and (b) yield mechanism.
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Introducing the non-dimensional quantities

-4 _h _ 3oV __bp _b _¥
«=T YTy 41D’ “Nv SN Tew 47
A=l-a+ay,
the inequalities (46) can be expressed as follows
2
—a’y3-a)S - (1 - a)3ay(2—a)+2(1- T sVK—PA, (48")
~3a%yS—2(1-a)Bay+ 1~ )T =—— —P(1+ a)A. 48)
(1-a)A

Some particular cases of general yield mechanism shown in Fig. 11(b) can be discussed in
view of (48). Assume first that the plastic hinge occurs only at A; then S =T and § =  and the
weak inequality (48') is satisfied as equality. Similarly, when the plastic hinge occurs at B, we
have S =0, 6 = 0 and the second weak inequality (48") is satisfied as equality. Finally, when the
two plastic hinges are active at A and B, the conditions (48') and (48") are satisfied as equalities
which should be used in order to determine S and T. It turns out that during the consecutive
phases of motion these particular mechanisms occur in different order. Let us call them
respectively the mechanisms 1, 2, and 3. Here, several particular cases of motion may exist. Let
us discuss them in more detail.

Case (1-1). This case occurs when the mechanism 1 with the central hinge occurs during the
time interval 0 < < t, when pressure acts on the beam and for ¢, =t <t when the free motion
of beam occurs until final rest. At the end of the first period, we have

0(t|): w(!1)=%N51t|2, w(t,)=%Nlt1251, (49)

where S, is determined from the equality (48"). In the second phase, the angular velocity 6(t)
can be found from the equation

6(t) = g(t) = 8(t,) + NSi(t —t.) = N[Sit, + 5i(t — t1)] (50)

where S, is determined from (48') with P = 0. The motion ends at ¢ = t, when 8(t;) = 0, hence

~o(1-8)
tf—tl(] 3.) (51)

Now the total rotation and the permanent final defiection at A can be expressed in the form

8(t,) = B(t) + 6(t)(ty ~ tl)+% NSt — 1) = % Nr,zs.(l _ :z-) (52)
1) =+ Niw, = L N s (1—5') (53)
) 2 2 1 1 Sl .

Case 1 occurs when the condition (48") is satisfied as strong inequality, both for P # 0 and
P = 0. This inequality must therefore be satisfied for S$=8,>0, T,=S,, P#0 and S = S, <0,
T=S5, P=0.

Case 2 (1-3-2). This case corresponds to the sequence of mechanisms [, 3 and 2. The
first phase 0 <t <t, corresponding to the mechanism 1 is described by eqns (49). During the
second phase, we have

6(H=N[Sit:+Ss(t— 1), $(O) = N[Sit,+ Tat —1))] (54)
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where §, and T are determined from equalities (48") and (48") for P = 0. From the condition ¢ > ¢
it follows that T5 > S, and the rotation at the hinge A terminates earlier than that at the hinge B. The
instant t = t, at which 8(t.)=0 is determined from (54), namely

tA=:(1-§Q (55)

3

and there is S, <0 since S;>0 and . >t.. From the second relation (54) and from (55), we
obtain

d(ta) = N1.S, (1 ——?) (56)

3

andsince T5 > S, and ¢(t) > 0, there must be 75 > 0. The values of 6(,) and (t.) are expressed as
follows

1 1 S T.T,
Bt =2 NS, (1 -%3) W(ta) = iNtfsl(l - z§+-533—) (57)
During the third phase t, <t <t,, there is § =0, y = NT: and
. . -
8(t)=0, ¢¥it)= Nt|81<1— 3 )+NT2(t—tA), (58}
where T, is determined from the equality (48”). The motion terminates at the instant
“t-n g (1-5)
b=ta=tig 1 A (59
and the final values of the angles 4 and ¢ are
1 S TS S ¢, T\
9(t;) = 0(ta), ts) = = Nt;°S [1"'2:"*'—_-—"?(]—'73) ] 60
(t;) = 0(ta), $(ts)=3 1 375 T 3. (60)

The deflection at A is expressed as follows

1 S . T.S 8 T\’
u((), tj)=§NLtI2W2’ W2=(1"C!)S|[l “2’S'l‘+—§;‘il—7i (1 ““S'i} ] +(IS|(1+‘:§;'). (61)

Let us state the conditions under which this case is valid. First, we have $,>0, §;<0, T, >0.
Secondly, the strong inequality (48") must be fulfilled for § = §,, T = S\, P # 0 and the strong
inequality (48") should hold for S=0, T=Ts, P =0.
The solutions for other cases can be obtained analogously and the details will not be
discussed here. We present only final expressions for deflection at the beam center.
Case 3 (2-2). The initial yield mechanism 2 occurs during the whole period of motion
0 <t = t;. The non-dimensional central deflection is

Wy=(1-a)T, (1—%). 62)

2

This case occurs when T,>0 and the inequality (48") holds for $ =0, T = T,, P#0 and for
§=0,T=T, P =0.
Case 4 (2-3-1). Now, the non-dimensional final deflection equals

S, T2 S;) [ 2T, T, - S
Wi=a——{1-=14+(0—-a)T2 {1 +—= — A — — Ty—— ]
ﬂ&~nf< AR wrﬁw(’ &> 3)
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The following conditions must now be fulfilled: (i) T.> 0, §; > Ts, §;> 0 (ii) the inequality (48
holds for § =0, T=T,, P#0 and (iii) the inequality (48") occurs for §=8§,, T=8,, P =0.
Case 5 (3-3-1). The non-dimensional deflection at the beam center is now expressed as

follows
7 - & 2
2) - TSI (FoF) -5 (B2=20). @
i 3

— (- a)Ts+ aS;](l 2 :?

The conditions for occurrence of this_ case are as follows: (i) Tx>S:>0, S;> T, (ii) the
inequality (48”) holds for S=8§,, T=S,, P=0.
Case 6 (3-3-2). Now we have

m-on-29) 1) (S s (19, @

This case occurs when (i) Ts> S5 >0, S < Ts, S5 <0, (ii) the inequality (48" is valid for S =90,
T=T, P =0.

6.2. Numerical results

The analytical expressions for final deflection at x =0 and inequalities for particular six
cases constitute the basis for numerical computations. The numerical scheme is as follows: (i)
for a set of parameters a, y, P we first calculate the quantities S, T: and S, T: (i =1,2,3), (ii)
next the proper case for which all inequalities are satisfied is singled out and the non-
dimensionsl deflection W; (i =1, 2, 3,...6) occuring in the formula for final deflection at the
center is determined; then

w0, 1) = %Nlhz“’i. 66)

Next, (iii) the range of validity of the presented solution is verified.

In order to verify (iii), it must be remembered that the solution presented in this work is
valid only for moderate pressures when the assumption on stationary plastic hinges at A and B
is valid. This assumption is satisfied when the bending moment is a monotonically decreasing
function from the maximum value at x = 0 to zero at x = [. This condition will be fulfilled when
d’M/dx* <0 for x = 0. Using non-dimensional quantities, we express this condition in the form

3y[aS+(1-a)T]- PA=0. 67)

The validity of this inequality must be checked for the first and the second phase only since
during the third phase there is S <0, T <0, P =0 and (67) is valid. This inequality is violated
for sufficiently high pressure P : thus our solution is valid for the range of moderate pressures.

Computations were carried out for P =2 and P =3 and occurence of different yield
mechanisms during motion is illustrated for P =3 in Fig. 12. The numbers in the plane (a, v)
show which case of motion occurs at a given point. The level lines of W; are also plotted in this
figure. We note that cases 2 and 6 do not occur within considered ranges of « and y. Moreover,
one important conclusion can be drawn, namely that the motion is terminated through the
one-degree-of freedom mechanism 1 or 2 and the mechanism 3 corresponds only to the
transient period. Thus the mechanism 3 is an unstable mode which passes into stable modes 1
or 2. The present analysis thus casts more light on stability of modes which was only briefly
mentioned in considering the case of impulsive loading. In fact, using mode solution, we were
not able to study stability of modes since this would require the analysis of perturbed motions
with respect to mode solutions.

It is also interesting to compare the regions of occurence of final modes 1 and 2. In Fig. 12
these regions are separated by a line drawn through points separating cases 3 and 4. When
compared with the line separating modes 1 and 2 in Fig. 3, it is seen that these two lines lie
fairly closely, see Fig. 13. Thus the present analysis complements the previous conclusions on
mode separation and their stability. The optimal solution is marked by an asterisk in Fig. 12.
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Fig. 12. Occurence of different yield cases in the plane (a, ) and level lines of non-dimensional deflection
W.. Optimal design is marked by ®.
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Fig. 13. Lines separating final modes 1 and 2 for impulsive and pressure loading.

The minimal non-dimensional deflection for P =3 is W(3) = 1.60 and occurs for a =0.75,
y = 1.54; for P =2 we would have respectively W(2) =0.47 « =0.74, y = 1.51. For a beam of
constant thickness, we have

Wu(P)=%(P - NP 68)
and
w3) w2 _
Wi(3) 0.53, __“Wu(2) =(.49. (69)

Thus for a beam of constant volume the deflection at the center is twice as large when using the
uniform thickness design instead of two-segment design. This result indicate that damping
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capacity of a structure may be considerably increased by using piecewise-constant cross
sections.

7. CONCLUDING REMARKS

The presented analysis for the case of pressure loading indicates that significant complexity
may arise when analysing the effect of configuration or dimension changes of a structure on the
mechanism of motion. In fact, for a three-segment beam the analysis would be very complex.
Therefore simplified models, such as for instance, mode solution should be of great help in
considering synthesis problems under dynamic loads. The application of mode solutions to
optimization of non-linear elastic or viscous structures was presented in [6].

Although this paper does not propose a general theory, it nevertheless casts a light on some
interesting aspects of dynamic behaviour, such as (i) non-uniqueness of modes for rigid-plastic
structures, (ii) stability and instability of some modes, (iii) importance of one-degree-of freedom
modes in design. It seems therefore that study of interaction between design and behaviour of
inelastic structures under dynamic loads may become important and fruitful field of research,
especially in exploring their optimal energy damping capacities.
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